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ABSTRACT

Articulated configuration of human body parts is an essential rep-
resentation of human motion, therefore is well suited for classify-
ing human actions. In this work, we propose a novel approach to
exploring the discriminative pose sub-patterns for effective action
classification. These pose sub-patterns are extracted from a pre-
defined set of 3D poses represented by hierarchical motion angles.
The basic idea is motivated by the two observations: (1) There ex-
ist representative sub-patterns in each action class, from which the
action class can be easily differentiated. (2) These sub-patterns fre-
quently appear in the action class. By constructing a connection
between frequent sub-patterns and the discriminative measure, we
develop the SSPI, namely, the Support Sub-Pattern Induced learn-
ing algorithm for simultaneous feature selection and feature learn-
ing. Based on the algorithm, discriminative pose sub-patterns can
be identified and used as a series of “magnetic centers” on the sur-
face of normalized super-sphere for feature transform. The “attrac-
tive forces” from the sub-patterns determine the direction and step-
length of the transform. This transformation makes a feature more
discriminative while maintaining dimensionality invariance. Com-
prehensive experimental studies conducted on a large scale motion
capture dataset demonstrate the effectiveness of the proposed ap-
proach for action classification and the superior performance over
the state-of-the-art techniques.

Categories and Subject Descriptors

1.5.4 [Pattern Recognition]: Applications; H.2.8 [Database Ap-
plications]: Data Mining
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1. INTRODUCTION

Human Motion Analysis (HMA) has been an interdisciplinary
research topic for decades and is attracting continuing interests
from multimedia, computer vision, computer graphics and medical
research communities, due to the potential applications in human-
computer interaction, clinical studies, content-based video index-
ing, intelligent surveillance, assisted living and so on [15, 24]. Ac-
tion classification is an important research thread of HMA and con-
structs the basis for many of the above mentioned applications.

Most of the action classification works focus on recognizing ac-
tions using visual appearance features extracted from videos [14,
27, 23] or still images [32, 22, 34]. Only a small number of early
works [31, 16] and recent works [22, 12, 32] introduce pose as a
cue, not straightforwardly, for action classification. Although ex-
tracting low level appearance features is much easier than obtaining
high-level pose parameters, we argue that human body pose, the ar-
ticulated configuration of human body parts, is essential to explain
the inherent nature of human motion, and therefore contains more
discriminative information for action classification.

The critical role of pose information for action recognition had
been validated by the Johansson experiment [20], which shows that
using 10-12 bright spots, describing the motions of the main joints
of a living body, can evoke a compelling impression of human
walking, running, dancing, etc. In comparison, appearance features
are noisy and not robust to the change in external imaging condi-
tion. Most importantly, appearance is not an essential description
of human motion. Furthermore, recent advances in human pose
estimation [29, 11, 33, 5, 4] facilitate the use of pose as input for
action recognition in a practical vision system. Motivated by the
above facts, in this work, we focus on using human pose as a feature
and exploring its potential effectiveness for the action classification
task.

Different from visual features of which each component carries
few explicit semantical meaning about human motion, pose feature
has several noticeable properties: (1) Physicality. Each compo-
nent of the pose feature has corresponding physical significance.
In this work, hierarchical motion angles are introduced to represent
body pose (see Section 5.1). (2) Clarity. Pose feature is concise
and noise free; therefore it is well suited for revealing the implicit
relationship between pose components and action classes. (3) Visi-
bility. The intermediate and final results can be visualized to show
the correlation between pose patterns and action classes through
qualitative analysis. Such properties enlighten us about the differ-
ent ways that pose features can be utilized. The idea is inspired by
how human beings perceive actions.

As the common human experience, action class information can
be easily captured from partial observations, for example, with
some parts of the body occluded. If a whole body pose is viewed as
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Figure 1: Body pose randomly selected from 9 action classes: chicken dance, golf swing, jump, cartwheel, boxing, run, motorcycle,
pick up and walk respectively from (a) to (i). The ellipse occluded red parts are the representative pose sub-patterns. We aim at
exploring the discriminative power of the sub-patterns and employing them for efficient action classification.

a full pattern, the partial observation corresponds to a sub-pattern,
which is a physical configuration of some local body parts. Then,
there exist representative sub-patterns in each action class, which
can be used to differentiate it from other classes. As can be seen
from Figure 1, one can recognize the actions very likely by just
seeing the ellipse occluded body parts. To effectively utilize pose
sub-pattern for action classification, however the following critical
questions need to be further addressed.

e How to find the representative pose sub-patterns for a specific
action class?

e How the pose sub-patterns can help improve the classifica-
tion performance?

e How to evaluate the discriminative power of pose sub-patterns
within the context of action classification?

In this paper, we answer the above questions systematically and
provide solutions using a novel feature transform framework.

Extracting sub-patterns from full poses is an exponential com-
plexity problem. Fortunately, benefiting from the physicality prop-
erty of pose features, existing frequent pattern mining algorithm
can be used to generate Support Sub-Patterns (SSP). This is moti-
vated by the fact that the representative sub-patterns of a particular
action class appear more frequently than other sub-patterns in that
action class. For example, for action “Boxing”, the typical sub-
pattern “arms held up to defend” appears most frequently therefore
itis recognized as SSP. Seeing just this sub-pattern can provide lots
of valuable information about the entire action “Boxing” (see Fig-
ure 9). Thus, by mining frequent patterns, the scalability issue for
classification in large pose databases could be solved.

Employing the obtained sub-patterns to make classification is the
heart of this work. We propose a Support Sub-Pattern Induced
(SSPI) feature transform framework. As a completely new ap-
proach, SSPI differs from two typical feature transform frameworks,
namely, feature combination and feature reduction. These frame-
works map the features to a higher and lower dimensional space re-
spectively to increase the discriminative power of the transformed
features. In contrast, SSPI does not change the feature dimension-
ality and the transform occurs in the bits correlated with the cor-
responding SSP. Namely, if a full pose pattern contains a SSP, this
SSP will dominate a change to the original full pattern. In other
words, SSPs perform like a series of fixed “magnetic centers” on
the surface of a normalized feature super-sphere. Each center leads
to a moving of the full pattern along the surface and the resultant
force from all the SSPs forms the final transformed feature. As far
as we know, this is the first work conducting feature transform in
this way.

During the feature transformation, there are two critical issues.
(1) What’s the criterion for evaluating such a transform? (2) How
much “force” from the SSPs should be acted on the full pattern?
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Because our final aim is to improve the accuracy of action clas-
sification, Fisher score is chosen as the criterion to construct the
objective function. And, each SSP is coupled with a weight, which
is used to calculate the strength of the attraction. The weights are
the parameters of the Fisher score function and can be learned from
pose data by maximizing the objective function. Once the weights
are determined, the feature will be transformed using the Fisher
score optimum. One can also evaluate the discriminative power of
a SSP according to its impact on the objective function.

To summarize, the main contributions of this work are as the
follows:

First, utilizing the “physicality”, “clearness” and “visibility” prop-
erties of pose data , we introduce frequent pattern mining to explore
Support Sub-Patterns. The SSPs are representative sub-patterns of
the action classes and can be applied to action classification, even
action search, pose estimation and human detection.

Secondly, we propose a SSP induced feature transform approach,
through which the feature keeps the original dimensionality but is
converted into a more discriminative formation for classification
via SSP induced feature learning. This framework could be applied
to more general feature transform applications.

Thirdly, for the SSPI framework, we construct the objective func-
tion using the Fisher score optimum. An efficient two-phases op-
timal algorithm for searching the optimal weights of the SSPs is
developed. Experiments on large scale pose databases demonstrate
the superior performance of the proposed algorithm on the action
classification task.

2. RELATED WORK

Action Classification. A large number of methods have been
proposed for recognizing human actions. Here we focus on meth-
ods most related to our proposed work. Readers interested in more
details can refer to some recent reviews [1, 24] on this topic.

Methods that use pose as a feature for action classification usu-
ally exploit the space-time trajectories to interpret human activities.
Campbell et al. [6] recognized human actions by representing them
as curves in low-dimensional phase spaces. Template matching is
used to find action labels. Similar methodologies can be found in
[26, 35, 28, 3], where either trajectories formed by joints [28, 35,
3] or curvature patterns of trajectories formed from body parts [26]
are treated as features. Slightly different from the explicit trajec-
tory based methods, in [31], motion of body parts is treated as a
set of signals to describe sequential changes of feature values. In a
much earlier work [30], Siskind animated a line-drawing of a per-
son as pose input and classified actions such as dropping, throwing,
picking up, and putting down by analyzing the event logic.

In sum, a common practice of these types of work is to mainly
consider the temporal behaviors of body pose but not the relation-
ship between the spatial configuration of poses and action classes.



In this work, the proposed idea of SSPs is used for mining the in-
ternal correlation between spatial sub-patterns and action labels.

Another recent research trend to employ pose as a cue in action
recognition is closely related to the concept of “poselets” [22, 12,
32]. The basic idea is that semantically similar actions or poses
should belong to clusters defined by the same poselets, no matter
what the appearance looks like. In doing so, pose becomes an ef-
ficient and complementary cue of appearance features for action
recognition. These kind of methods are advantageous in that they
combine more sources of information. However, the noisy nature
of image data and the required manual annotation make it difficult
to explore the relationship between pose patterns and action class
labels in a meaningful way.

Pattern Based Classifcation. Pattern based classification is a fo-
cused research topic in data mining field, where the discriminative
frequent patterns usually are taken as features to build high quality
classifiers [21, 8, 9, 13]. Frequent sub-patterns reveal the asso-
ciations between data attributes, therefore carrying rich semantic
information about the data. The importance of frequent pattern in
classification tasks has been thoroughly investigated in [8].

The construction of a feature representation using frequent pat-
terns is the core of pattern based classification. Cheng et al. [8, 9]
achieved this by feature combination, namely, mapping the original
features into a higher dimensional space by combing the frequent
patterns with the original single features. The critical part of this
procedure is feature selection, by which the most discriminative
frequent patterns are selected to construct the final feature repre-
sentation. In [8], feature selection is separately conducted from
the generation of frequent patterns. To speed up the algorithm and
mine highly discriminative patterns, direct discriminative pattern
mining approaches are proposed in [9, 13, 21].

Besides aforementioned methods, associative classification is an-
other class of frequent pattern based classification approaches. It is
rule based and the association between frequent patterns and class
label is used for classification [19]. It’s also worth mentioning that
Yuan et al. [36] found the visual patterns with semantic correlations
by mining frequent patterns from image databases.

Our work is different from above approaches in the following
aspects: (1) Feature transform is not a simple feature combination.
Changes occurr only in the bits correlated with the corresponding
frequent patterns and the feature is length invariant. (2) Feature
selection is implicitly integrated into the feature transform proce-
dure by learning the transform weights of the frequent patterns. (3)
The discriminative power of the frequent patterns can be explicitly
evaluated according to the learned transform model.

3. PROBLEM FORMULATION

In the context of action classification, assume a pose dataset
has k categorical attributes, each of which is a motion angle and
has a set of values. These pose data points fall into m action
classes C = {c1, -+ ,cm}. Thus, each (angle,value) pair can
be mapped to a distinct item in P = {01, -+ ,04}. Since pose an-
gles are represented by continuous numerical attributes, the values
should first be discretized. Here we adopt binary coding. Suppose
a pair (ang,val) — 0;, where ang is a joint angle and val is a
value. Let x be the pose vector of a data point s. Then x; = 1 if
ang(s) = val; z; = 0if ang(s) # val. In this way, the dataset
is represented in B? as D = {x;, 5 }7—,, where x; € B4, y; € C
and z;; € B = {0,1}, Vi € [1,n],5 € [1,d]. Therefore, after
discretization and binary mapping, a pose data point is mapped to
a binary pattern, which is a convenient form to use for sub-pattern
exploration. For the ease of analysis, in the following we define
some related concepts built on the basis of pose patterns [8].

275

Definition 1. (Sub-Pattern) A sub-pattern a = {0s,,- -+, 04, }
is a subset of P, where s; € {1,---,d}, Vi € [1,k]. A single
pattern o; € P is the special case of sub-pattern. Therefore, given
a dataset D = {x;}, the set of data points that contains sub-pattern
ais denoted as Do = {x;|zis; = 1,Vos; € a}. Anequal-length
binary expression of a sub-pattern « is noted as X, € B? with
Zo = 1forVo € aand z, = 0 for Vo ¢ a.

In this work, we aim to explore the discriminative pose sub-
patterns for action classes. The support sub-patterns related to the
action class c are defined as:

Definition 2. (Support Sub-Pattern (SSP)) For a dataset D. with
class label ¢, a sub-pattern « is supportive for this class if § =
|?5;|“‘ > 0o, where 6 is the minimum support threshold with 0 <
0o < 1, hence @ is the relative support of a. The set of support

sub-patterns of class c is denoted as SP..

SSP actually defines the sub-patterns that most frequently ap-
pear in each action class as the supportive patterns for classifica-
tion. This is consistent with our daily observation that there exist
some typical poses in each action class, which can describe the
action very well. Additionally, these poses often occur with high
frequency while any subject performs the action. Therefore these
poses, or more precisely, the pose sub-patterns, are discriminative
and representative of the action class. Very often one can recog-
nize an action class by just observing a local pose, for example, a
pose of a leg or an arm when other parts of the human body are
occluded. The observed sub-parts that can help people recognize
actions correspond to the SSP. We will make further explorations
of SSPs in the following section.

4. FEATURE TRANSFORM

In this section, we focus on the feature transform for effective
classification based on SSPs. Here, feature transform is an opera-
tion performed on the original pose data points. For a data point x,
a feature transform could be any function {f : x — x/, f € F}
from functional space F. After the transformation, one can expect
much better classification performance in the transformed feature
space than the original one. We examine two kinds of feature trans-
form methods in the following sections.

4.1 Conventional SSP Based Feature Combi-
nation

As introduced in [8], the conventional frequent patterns based
feature transform is a form of non-linear feature combination over
the set of single features. Under this transform, given a dataset
D = {xi,y:}i—1 and a set of frequent sub-patterns SP collected
from all the classes, D is mapped to a higher dimensional feature
space, by integrating the SSP and the original items. Hence the

feature space B¢ (d = |P|) is enlarged to B with features taken
in P U (U;™, SP;). After the transform, the data is denoted as

i=cqp
D = {x;,yi}?zl, where x; € B? and
d =|Pu U

i=cq

SPi)l. Q)]

Then, what is the philosophy behind the conventional frequent
pattern based classification? To make the picture more clear, we
summarize the motivations as follows according to [8].

e The discriminative power of a SSP is much higher than the
original single features because they capture more underly-
ing semantics of the data. It’s true for human action classifi-
cation, as explained in Section 3.



e The dimensionality of feature space is increased to d’ from
d (see Eq. (1)). This will also likely increase the chance of
including discriminative features.

e The discriminative power of low frequency sub-patterns is
confined by a small value because of their limited coverage
in the dataset. Symmetrically, it’s true for the very high fre-
quency sub-patterns due to their commonness in the data.

The implementation of the conventional SSP based feature com-
bination is straightforward. The detailed description is given in
Algorithm 1. One can refer to [8] for the proof of the above state-
ments and the procedures for feature selection mentioned in the
Algorithm 1.

Algorithm 1 Conventional SSP Based Feature Combination

1: Input: Original dataset D = {x;, y; }j—1, min_sup : Oy
2: Output: Transformed dataset D = {x;, Yi b1
3: for ¢; = c1 to ¢, do
4: SP., = Apriori(De;, 6o)
> Apriori represents the algorithm of frequent pattern mining
: end for
6: SP, = FeatureSel(U;, SP;, param)
> FeatureSel functionalized as the procedure for feature
selection, param is the related parameters.
7: for allx; € D do ,
8: x; = CheckSPP(x;, SPs), |x;| = |x:i| + |SPs|
> CheckSPP checks whether the SPPs appear in x; or not. If
appear, the corresponding additional indicator bit is set as 1; if
not, set it as 0.
9: end for
: return D' = {x;,yi}?zl

W

4.2 SSP Induced Feature Transform

SSP based feature combination improves the classification per-
formance by explicitly adding additional bits. It extends the fea-
tures to a much higher space meanwhile loads more computational
burden onto classifier. To avoid explicit feature combination and
feature selection, we propose a novel SSP Induced (SSPI) feature
transform algorithm, by which the feature length is kept invariant
and the feature selection is implicitly incorporated into the learning
process for feature transform.

4.2.1 Fisher Score Oriented Feature Learning

Fisher score is a general measure for feature selection [17]. How-
ever, in our algorithm, it is used as an orientation for learning
based feature transform. Given the original pose data set D =
{xi,Yitim1, Xi € B<. The Fisher score is defined as

F(X) = tr{(S)(S: +~1) '}, @)

where X € B4*™ and 1 is a positive regularization parameter. Sy
is called between-class scatter matrix and S; is called total scatter
matrix, which are respectively defined as follows

an He,, — )(l‘l’ck _ﬂ)T
k=1

:Z(x —

3)
- )"

where fic, and n., are the mean vector and the size of the k-th
class respectively. fi = Y " | Ne, fle, is the overall mean vec-
tor. To statistically improve the classification performance, we
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can maximize the distance between data points in different classes,
while minimizing the distance between data points in the same
class. This can be achieved by maximizing the Fisher score in Eq.
(2). To this end, we need to find a feature transform f(-) for all

data points such that f : {x;}i=; — {x;}?zl and satisfy

?%Fmﬁzm@m&+ﬂY% )
where x;, x are with the same dimensionality d in our work and
Sy, S; are constructed using the transformed data {x i, As-
sume we collect k SSPs: {SP;}5_, from all the classes by fre-
quent pattern mining using the same parameter msin_sup. Since
the SSPs contain discriminative class information, the feature trans-
form of any data point x € B¢ will be SSP induced and can be
formulated as follows

= 1,Vosi S SPJ ifx € Dspj
otherwise

(&)

’
% = { (xsp; D X) - b5, T,
7 X

’ 1 ’

X =2 % (6)
J

where xsp; is the equal-length binary expression of sub-pattern

SPj and Dsp; is the dataset containing SP;, as defined in Defi-

nition 1. x; is the transformed feature under the function of SP;.
x € Dsp; ensures that feature transform is performed only when
x contains the SSP. “@” is the exclusive OR operation on two bi-
nary strings for checking the bit difference between x and xsp;.
0s; € P is an item of x. After the “@®” operation, the bits of x
with value “1” corresponding to the items of SP; are unexpect-
edly changed to “0”. We need to set them back to original “1”.
By doing this, change will only take place in the bits where x is
“1” whereas xsp; is “07. ¢; is the weight parameter coming up
with SP;, which indicates the “force” of SP; on the data points
containing it or SP;’s impact on the Fisher score. The final trans-
formed feature x_is the resultant of the individual “forces” from
all the SSPs.

Then, after Eq. (5) and (6) are plugged into Eq. (4), the Fisher
score becomes a function with respect to ® = [¢1, P2, - , Pk
We are going to find the optimum ®* to maximize the Fisher score
F(®)

" = F(D).

1Pk]

Due to the complex non-linear transform operation, it’s difficult
to derive the derivation g—i analytically. However, the property
of the objective function is well defined and the optimum searching
can be efficiently performed using non-gradient based optimization
algorithms. Our optimization scheme and the implementation of
feature transform procedure are introduced in the next section.

@)

argmax
=[¢1,02,

4.2.2 Algorithm Implementation

Implementation of Feature Transform. The implementation of
the proposed feature transform algorithm is summarized in Algo-
rithm 2. It’s worth pointing out that after feature transform, the
data points are not with binary format anymore, because the bit
value has been mapped to real domain. The efficiency of the algo-
rithm is sufficient to be utilized on large scale datasets because the
computational complexity of the SSPI feature transform procedure
is linear with regards to the size of dataset.

Optimization. In Algorlthm 2, after going through feature trans-

form, the new dataset D' turns into the function of parameters



Algorithm 2 SSP Induced Feature Transform

1: Input: Training dataset D = {x;, yi }i=1, {SP; }le
2: Output: Transformed dataset D = {x;, Yitie1, D*
3: fori =1tondo
4. for j = 1to kdo
ifx; € Dspj then

% = (xsp, %) - 65

i’is. = 17VOS. € SP]
> reset the bits of )E;j corresponding to items of SP; as “1”.

8: else ,
9: X

5:
6:
7:

. ij — Xi
10: end if
11: end for
12: % = mean(ﬁc;j)
> mean takes the average over all j
13: end for
14: F=F(D")

> plug D' = {)2;}?21 into Eq. (4)
15: [®*, D'] = optimize(F)

> maximize Fisher score function w.r.t
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Figure 2: (a) Relationship between common SSI weight and the
Fisher score. (b) Relationship between common SSI weight and
the final classification accuracy.

O = [p1, P2, -+ , ] As the weights of the SSPs, the parameters
[p1, P2, - - -, dr] determine how and what extent of the “forces”
from SSPs will act on the input data points. Under the meaning of
Fisher score maximization, the optimal ®* will lead to the best
classification performance. To search the ®*, it’s intractable to
use gradient based optimal algorithm because the highly non-linear
feature transform operation makes it hard to get the analytical for-
mation of the objective function with regards to ®. However, the
interesting property of the objective function allows us to find an
efficient two-phases optimal algorithm for this problem.

To check the property of the objective function which is closely
related to the action classification problem, we conduct the anal-
ysis on the human pose data. We first set the weights of all the
SSPs as identical'. By doing this, the multiple dimensional opti-
mization turns into one-dimensional optimization, which makes it
much easier to check the property of the objective function. The
relationship between the common weight ¢ and Fisher score can
be found in Figure 2(a). As can be seen, the functional relationship
is unimodal and the objective function is convex. So conventional
one dimensional optimization algorithm is sufficient to find the op-
timum. In this work, we use golden section search [25].

From Figure 2(b), however, it can be seen that after reaching
at the top point of the objective function, in the flat domain, an
abrupt decrease in classification accuracy will happen if the value

!'The weights are initialized randomly within the interval [1, 10] in
our problem.
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Figure 3: (a) F-W curves formed by fixing the weights of other
SSPs at the common optimal weight and changing the weight
of one SSP. (b) 3D visualization of the objective function.

of the common weight keeps increasing. Due to the monotonous
increasing of the common weight, the feature vector is changed
continuously; therefore it has difficulty converging to the best clas-
sification accuracy. For this reason we switch to the second phase,
where the multiple constraints on the different weights can form a
well-shaped convex objective function.

The aim of the second phase optimization is to find the optimal
individual weights for each SSP, starting from the initial search-
ing point obtained in the first phase optimization. To this end, we
analyze the property of the objective function with respect to the
individual weights. In Figure 3(a), we plot the curves of Fisher
score about the individual SSP weights. We call the curves as F-
W curve, which is formed by fixing the weights of other SSPs at
the common optimal value and changing the weight of a SSP. It’s
obvious that the curves are parabola-like and convex. Furthermore,
for a more clear and intuitive visualization, we plot the 3D shape of
the objective function in Figure 3(b). As we can see, the function
is also very smooth. In view of the convexity property of the objec-
tive function, we employ the downhill simplex method [25] as the
searching strategy. Benefitting from the convexity of the objective
function and the given starting guess obtained from the first phase,
the optimal searching converges quickly.

The two-phase optimization process is described in Algorithm 3.

Algorithm 3 Two-Phase SSP Weights Optimization Algorithm

1: Input: Training dataset D = {x;,y:}/=1, SSP = {SP:}}_,
2: Output: Optimized weights ®* = [¢7], ¢3, - - , Pk
3 ¢=[1,1,---,1]- ¢
> set the weights of SSPs as common weight
4: D' = FeatureTrans(D, SSP, ®)
> transformed dataset parameterized by ¢ by Algorithm 2
5: F=F(D)
6: ¢* = SectionSearch(F’)
> Phase 1: golden section search for one dimensional
optimization
7: Simplex Point = GenerateSimplex(¢*, para)
> generate the initial guess for simplex search, para is the
related parameters

8: repeat

9: D = FeatureTrans(D, SS P, Simplex Point)
10 F=F0D")

11: Simplex Point = SimplexSearch(F’)

> Phase 2: simplex search for multiple dimensional
optimization

12: until <converge> return ®* = Simplex Point
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Figure 4: (a) Full pattern “111” (blue) and several sub-
patterns before feature transform. (b) “111” pattern trans-
formed (dashed blue pattern) to another place under the forces
from the sub-patterns.

4.2.3 Geometric Interpretation

The proposed feature transform approach can be intuitively ex-
plained from the geometric viewpoint, as can be seen in Figure 4.
For visualization, we take three-dimensional data as example.

Suppose we have a binary pattern “111” (the blue point in Figure
4(a) ) and several sub-patterns “110”, “101”, “011” (red points) and
“001”, 0107, “100” (green points). For simplicity, we just consider
the impacts of the sub-patterns denoted by the red color. All the
patterns can be easily normalized to reside on the surface of a unit
3D sphere. Then, the feature transform is actually a redistribution
of the data points along the surface of the 3D sphere. One can
imagine the sub-patterns as fixed magnetic centers scattered on the
surface of the sphere and the data points can move freely along the
surface. Since the pattern “111” contains all the sub-patterns, all
the sub-patterns will have “magnetic attractive force” on it. If the
force of a sub-pattern is powerful enough for pattern “111”, the
angle between them will be reduced and the “111” pattern will be
attracted to approaching the sub-pattern. In Fig. 4, we can see that
finally the pattern “111” is transformed to another point under the
composition of forces from all the three sub-patterns.

For a practical problem, such as pose based action classifica-
tion, the sub-patterns actually contain rich information about ac-
tion classes because they frequently appear in the specific action
classes. So when a sub-pattern appears in a data point, it gives
partial evidence that this point contains part of the “gene” for that
action class. It makes sense that we move a step further to decrease
the distance between the pattern and the sub-pattern by a feature
transform. Statistically speaking, this kind of “approaching” will
result in the improvement of that feature’s discriminative power.
The geometric viewpoint is helpful to deepen the understanding of
the SSPI approach theoretically and to construct a more general
feature learning model. This is a direction of our future work.

S. EXPERIMENTS

In this section, we report our empirical study of the proposed
approach for action classification and sub-pattern analysis of pose
data. By conducting the experimental evaluation, we hope to get the
answers to two main concerns: (1) Starting from the SSP of pose
data, what is the performance of the proposed feature transform
framework for action classification? (2) In the process of feature
transform, what kind of sub-patterns are extracted and how about
their discriminative power to action classification? By conducting
experimental evaluations on a large scale human pose dataset, for
the first concern, we examine the effectiveness of the SSPI feature
transform approach and make comparison with the state-of-the-art
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Figure 5: (a) Human body model with 34 bones. (b) Defined
hierarchical structure of human body.

approaches. For the second concern, we visually check the SSPs
for all the action classes and evaluate their discriminative power
quantitatively under the feature transform framework.

5.1 Experimental Setup: Data and Dataset

Human Pose Data. In this work, we work on human pose data.
The human body pose is represented in the Acclaim format (ASF,
AMC). With this format, human body is defined by a full body
model which is consisted of 34 bones with hierarchical structures.
The pose is specified by the motion angles of body bones, which
describe the dynamic relationships between parent and children
bones, as well as the global motion of the full body. See Fig-
ure 5 for the visualized body model and the definition of hierarchi-
cal structure. The original full body Degree of Freedoms (DOFs)
are 62. However, to reduce the computational burden, we discard
some unimportant joint angles, such as fingers, thumb, toes and so
forth in the experiments. Finally, we select 19 body angles which
cover the DoFs of humerus (left and right), radius (left and right),
femur (left and right), tibia (left and right) and the upper back.

In this work, our approach is built on the basis of sub-pattern
analysis, therefore the continuous pose data first needs to be quan-
tized. To this end, we constrain the value of the motion angles into
the interval [—180°,180°] and then perform 10 levels quantization
to each angle within their respective ranges. By doing this, each
pose data point is turned into a 190-bit binary pattern, which is
used as the basic pose feature in the following experiments.

Experimental Setup of The Dataset. To conduct comprehen-
sive evaluations, we perform experiments on the motion capture
dataset collected at CMU [10], which is very large and includes
dozens of actions performed by over one hundred subjects. From
the whole database, we choose the MoCa data of 9 action classes
performed by diverse number of subjects respectively. The 9 action
classes include walk, run, jump, pick-up, sitting on a motorcycle,
cartwheel, boxing, chicken dance and golf swing. Because the to-
tal frame number of the different action classes are different in the
original dataset, different percentages are adopted when taking the
data frames from the action classes. In doing so, each class will
roughly have the same number of data frames. This avoids the class
imbalance problem. In our experimental setup, there are in total of
169975 frames for the 9 classes, from which we randomly select
52482 frames for each experiment. Some portion of the 52482 data
frames are used for training and the remainder for testing. In most
of our experiments we divided this set in half.



Table 1: Accuracy (%) of action classification on different pose features. See texts for the abbreviations.

Pose Features

Action RQ BQ4 BQIO PCA(BQIO) LDA(BQIO) BQFP[8,9] BQFP-S[8] SSPI

Walk 84.00 92.03 89.27 84.09 82.92 91.02 91.14 97.39
Run 77.66 88.92 89.43 70.32 79.10 88.68 93.96 99.00
Jump 87.05 95.02 92.93 84.53 85.30 93.36 96.03 99.02
Pick-up 73.47 87.80 87.89 82.19 76.15 87.64 93.08 98.12
Motorcycle 99.40 99.45 99.32 99.75 98.42 99.70 99.45 100.0
Cartwheel 7754  93.08 92.72 74.66 79.93 92.76 94.24 99.30
Boxing 86.08 95.13 94.73 98.18 90.62 96.16 95.96 99.37
Chicken-dance 91.21 95.64 96.47 84.51 90.00 96.09 96.58 99.69
Golf-swing 99.92 100.0 99.92 90.19 99.35 99.92 100.0 100.0
Average 86.26 94.12 93.63 85.38 86.87 93.92 95.60 99.10

5.2 Classification Performance

In this part, working on the MoCa data, we evaluate the effective-
ness of the proposed feature transform algorithm for action classi-
fication. By comparing with several different methods, the per-
formance of our approach is checked from different perspectives,
which are important to have a comprehensive understanding to the
SSPI feature transform framework.

Experimental Setup of the Classifier. In this work, SVM is used
as the classifier. The LIBSVM [7] is chosen as the software imple-
mentation of SVM and we use RBF as the kernel of SVM. For
each prediction model, before model training, a grid search is con-
ducted to find the optimum of the parameters C, v of RBF using
5-folds cross-validation. The model is trained also using a 5-folds
cross-validation on the training dataset using the optimal C,~. In
all the classification experiments, the final accuracy is reported by
averaging on 10 executions of the SVM prediction procedure, us-
ing training and test subsets randomly taken from the full dataset.
One advantage of doing this is to avoid over-fitting.

Selected Approaches for Comparison. To evaluate the perfor-
mance of our approach, we compare with seven methods. Among
them, three coding strategies, namely, real number coding, 4-bit
coding and 10-bit coding are evaluated. To work on pattern based
classification, quantization of the original continuous data is re-
quired. Real-number Quantization (RQ) maps each feature dimen-
sionality to a discrete real value which is obtained by 10-level quan-
tization of the original single features. Using binary coding scheme,
4 bits (BQ4) and 10 bits (BQ10) coding map each feature dimen-
sionality to a 4-bit and 10-bit binary code respectively, so the orig-
inal feature vector is turned into either a 76-bit or 190-bit binary
string.

We use the methods proposed in [8], which we call BQFP and
BQFP-S, as the key comparison for validating our proposed SSPI
feature transform algorithm. There are three reasons for select-
ing these algorithms: (1) Both SSPI and BQFPs work on Frequent
Pattern (FP) based classification. The BQFP and its upgraded ver-
sion, BDFP-S, which adds an additional step for feature selection,
are the state-or-the-art techniques. (2) BQFPs use non-liner feature
combination scheme, which maps the feature to a higher dimen-
sional space. In doing so, the performance gets improved but com-
putational burden for classifier is increased. However, the SSPI
does not change the dimensionality of the features. (3) BQFP-S
explicitly chooses its features, while SSPI does so implicitly us-
ing SSP weight learning. We therefore want to compare the dif-
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ferences mentioned in (2) and (3) quantitatively by experimental
evaluations.

Furthermore, because SSPI keeps feature’s dimensionality in-
variant whereas BQFPs increase it, it will be interesting to see if
reducing the dimensionality results in better performance. So, the
conventional PCA and LDA are used for this purpose. We select
LDA because it is similar to SSPI, in that it also uses Fisher score
as the internal criteria for dimensionality reduction. Notice that
both PCA and LDA work on BQ10 coding scheme.

100.00

B

SVM Accuracy (%)

4 BQFP-s  ABQ10

O sspi

20% 30% 40% 50% 60% 70% 80% 90%

Size of Training Dataset

Figure 6: Classification accuracy as a function of the size of
training dataset. The SSPI, BQFP-S and BQ10 are compared.

Results and Analysis. In Table 1, we report the classification
accuracy of the pose features generated by different methods. For
the three coding strategies, it can be seen that the performance of
RQ is significantly worse than BQ4 and BQ10. This is due to its
simple quantization scheme performed in real domain. BQ4 and
BQ10 have close performance because they use similar binary cod-
ing scheme. However, in our problem, we prefer to use BQ10 as
the basic quantization method, because each bit in BQ10 has a very
clear physical meaning and the obtained SSPs are specified by the
local human poses and can be easily visualized. It satisfies our re-
quirements of “physicality”” and “visibility” to pose data.

Notice that the performances of BQFP and BQ10 are very similar
for all the action classes. This result is consistent with [8]. It con-
firms the hypothesis that for frequent pattern based classification,
without feature selection, the performance of feature combination
schemes can be very poor. As can be seen, after adding feature
selection module to the BQFP algorithm, BQFP-S achieves much
better performance. It’s worth pointing out that for the pose data,
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Figure 7: Confusion matrices of (a) BQ10, (b) BQFP-S and (c) SSPI for action classification, with mean classification accuracy
of 93.63%, 95.6% and 99.10% respectively. Notice that many confusions are removed or relieved in the SSPI feature transform
framework, especially for the action class “walk”, “run”, “pick-up” and “cartwheel”.

even a small increase in classification accuracy is important and
not easy to achieve. So the superior performance of BQFP-S over
BQFP is significant. Compared with BQFPs and BQ10, the perfor-
mance of PCA and LDA is discouraged. It may be caused by the
information loss combined with the dimensionality reduction.

It’s encouraging that SSPI significantly outperforms all the other
methods in classification accuracy, for almost all the action classes
except the identical 100% performance with BQ4 and BQFP-S for
the action class“golf-swing”. Overall, SSPI outperforms the state-
of-the-art technique, BQFP-S, by 4% in classification accuracy,
which is quite remarkable for pose pattern based classification. It’s
also worth noting that for the most confused action classes “walk”,
“run”, “pick-up” and “cartwheel”, SSPI achieves significant perfor-
mance improvements on SVM accuracy compared to all the other
methods (5-7% and 8-11% improvement compared to BQFP-S and
BQ10 respectively), as indicated in Table 1. The four actions are
prone to confuse because many “walk-like” frames are contained in
these actions. From Figure 7, it can be seen that many confusions
are removed or relieved in the SSPI feature transform framework,
especially for the four confusing actions. The potential cause for
resulting in such kind of improvement of SSPI is that under the
“force” of SSPs, the bits corresponding to the “walk-like” attribute
are changed so that the confusion can be mitigated accordingly.

For a more comprehensive evaluation to SSPI, we also investi-
gate the robustness of SSPI algorithm to the sizes of training and
test datasets. The results are shown in Figure 6. For clearness, we
just select the BQFP-S and BQ10 for comparisons®. It can be seen
that with the increase of training dataset size (indicated by the ratio
of training data), the performance of all the three methods is im-
proved. It also can be observed that SSPI obviously outperforms
the other two methods during the change of data size.

From the experimental results, we can draw several observa-
tions. First of all, the proposed SSPI feature transform framework
achieves remarkable overall better performance than the state-of-
the-art techniques. Its effectiveness is demonstrated. Second, the
SSPI feature transform mechanism is beneficial to remove the con-
fusion appeared between the classes with overlapped attributes. Fi-
nally, the performance of SSPI is robust and can be applied to the
datasets with different scales.

In terms of the computational expense, the mining process is
quite efficient and it takes less than half a second for mining 300

“There is a slight difference between the numbers in Table 1 and
Fig. 6 (50% case), as we select data randomly for each execution.
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SSPs from nearly 30,000 training samples. The most time con-
suming part is on the weights optimization. It takes 10 minutes or
so to complete the optimum searching on the training data, using a
3.1G core i5 machine with 4G memory.

5.3 Evaluation On Support Sub-Patterns

SSPI feature transform is demonstrated quite effective to action
classification. The functionality of the SSP, however, is not just
constrained to classification. Thanks to the good properties of hu-
man pose data, we can visualize the SSPs and intuitively build
the correspondence between the SSP represented local pose and
its discriminative power, which can be computed explicitly within
the framework of feature transform. By doing this, the utilization
of SSP can be extended to much wider scenarios, such as action
search, pose estimation, event understanding and so forth. There-
fore, in this part, we conduct comprehensive evaluation to the SSP.
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Figure 8: (a) Fisher score as a function of the pattern length.
The Fisher score is averaged over all the SSPs with the same
length. (b) Average discriminative power of the SSPs is com-
pared, with regards to the pattern length.

SSP Mining. To generate SSPs, frequent pattern mining algo-
rithm is an effective solution. In this work, we use Apriori algo-
rithm [2, 18] to mine the frequent items from quantized human
pose data, namely, the BQ10 binary string introduced in Section
5.2. There is only one parameter which needs to be specified in the
Apriori algorithm, say, the minimum support threshold (min_sup)
defined in Definition 1. We apply the same min_sup to all the
action classes and empirically set it as 0.55 in this work.

In our experiments, for each action class, about dozens of the
SSPs are generated and the length of the SSP ranges from 1 to 6.
After merging the same SSP from different classes, near 300 SSPs
are employed for feature transform. The same number also comes



Table 2: Top six SSPs ranked by their discriminative power and listed in descending order from left to right.
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SSPs are generated for each action class respectively. The actions are walk, boxing, jump, pick-up, motorcycle pose, run, golf-swing,
cartwheel and chicken dance from left to right and top to bottom.

up with the dimensionality of the weight vector ®. In Figure 9, we
show the pose samples randomly selected from the 9 action classes
and two corresponding SSPs in their right sides. As can be seen,
the visualization of the SSP presents us an intuitive observation that
the SSP is the representative local pose and can be viewed as the
“signature” of the corresponding action class.

Analysis on SSP’s Discriminative Power. SSP plays important
role in feature transform. However, in this process, the importance
of different SSPs is unequal. One critical advantage of the SSPI
feature transform framework is that the “importance”, namely the
discriminative power of the SSPs can be quantitatively evaluated.
To this end, we define the Discriminative Power (DP) of the SSP
as: 8872, where F' is the Fisher score function and ¢; is the weight
parameter associated with the ¢-th SSP.

We can see that the DP actually measures the sensitivity of the
Fisher score function to the change of ¢ corresponding to the SSP.
In our implementation, we compute the £ in this way: when
calculating the DP of the i-th SSP, we first fix the weights of other
SSPs at their optimal values and then change the values of ¢; within
a scope, which is taken as [0, 20] in our experiments, to measure
the change of Fisher score function AF'. Because the objective
function is convex according to the analysis in Section 4.2.2, AF’
is taken as the difference between peak value and valley value of
the objective function within the scope.

As a SSP actually corresponds to a feature subset, it can be eval-
uated with Fisher score based feature selection method [17]. To
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evaluate the DP of the SSP, we first check the Fisher score of the
SSP by taking the SSP as the selected feature subset. The average
Fisher score with regards to different pattern length is compared in
Figure 8(a). As can be seen, with the increase of pattern length, the
Fisher score is monotonously increasing. It’s reasonable because
long patterns contain more information than the shorter ones when
they are used as feature subset. However, when SSP is adapted into
the SSPI feature transform framework, it is no longer treated as fea-
ture subset and it plays more like a “force” to induce the change of
feature. Therefore the pattern length is not the dominant factor to
determine SSP’s DP. In Figure 8(b), the DP of SSPs with different
pattern lengths are compared. The DP is computed by averaging on
all the SSPs with the same pattern length. It can be found that the
SSP with length 4 become the most discriminative sub-patterns and
the length 5, 6 degrade to the worst comparing with Figure 8(a).
We also rank the SSPs according to their DPs. The result is
shown in Table 2, where the figures of the top 6 SSPs and their cor-
responding DPs are presented. Although the SSP is plotted just on
the pose of one class, actually they may appear in multiple action
classes. Statistically speaking, the higher the rank of a SSP, the
greater the contribution it makes for action classification. There-
fore, essentially under the framework of SSPI, the SSPs are selected
by an implicit way according to their DPs, which is different from
the explicit manner for feature selection presented in [8].
Potentially, the results of quantitative evaluation on SSP can be
used for action search, action retrieval and pose estimation. For ex-



ample, the DP of a SSP can be viewed as a confidence of classifying
a pose to a specific action class represented by the SSPs.

6. CONCLUSION

In this paper, we propose a new feature transform framework for
pose based action classification. Utilizing the properties of pose
data, we introduce frequent pattern mining to explore the Support
Sub-Patterns (SSP), which are representative sub-patterns of the
action class and can be applied for effective action classification.
Based on the sub-patterns, the original pose feature can be con-
verted into a more discriminative formation for classification, by
SSP induced feature learning. In this framework, we construct the
objective function under the meaning of Fisher score optimum. A
two-phases efficient optimal algorithm for searching the optimal
weights of SSPs is developed. By applying the learned optimal
weights on feature transform, the discriminative feature for clas-
sification is obtained. Experimental studies demonstrate the supe-
rior performance of the proposed approach over the state-of-the-art
techniques on the task of action classification. Furthermore, the
discriminative power of the SSP can be explicitly evaluated within
the feature transform framework. It could derive many interesting
applications within the field of human motion analysis.
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